
Status on North Korea's Fissile Material Production

Sulgiye Park

North Korea's Nuclear Activities

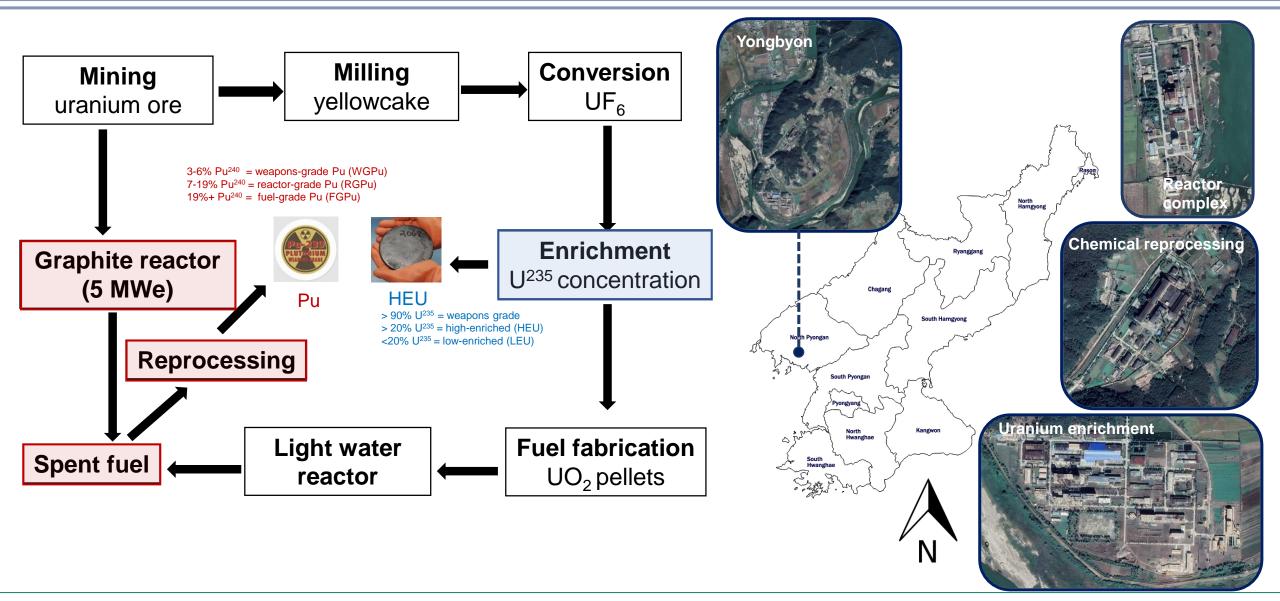
How many nuclear arsenals does it have? And how many more can it make?
How much fissile materials (U and Pu) does it have (stockpiled and capacity)?

Fissile Materials and Nuclear Weapons

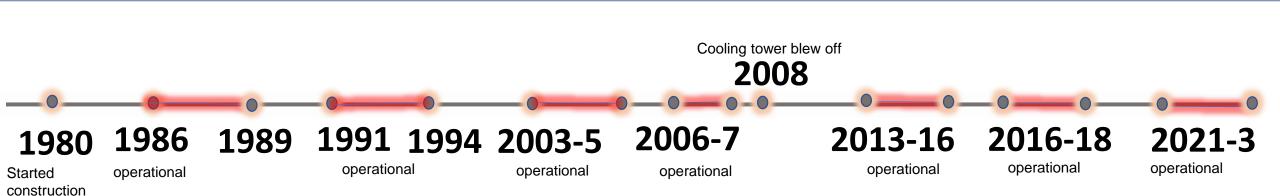
North Korea's nuclear warhead estimates

Lit. Review	warheads
D. Kimball (2022)	40-50
D. Albright (2023)	35-63 (46)
U.S. DIA (2020)	20-60
H. Kristensen & M. Korda (2022)	45-55
Fedchenko and Kelley (2020)	10-20 (thermonuclear bomb)
Hecker (2020, 2021, 2023)	20-60, average 45 (2021) & 65 (by 2024)
ICAN (2023)	40-50
Y.H. Park & S.K. Lee (2023)	80-90 (2023) & 166 (2030)
Stockholm International Research Institute (2023)	Enough to build 50-70 (likely assembled ~30)
H.J. Kim (2018)	20-60
B.M. Kim (2021)	10-60

"South Korea has become our undoubted enemy" "Exponential increase in country's nuclear arsenal in 2023" "...180 total nuclear weapons"

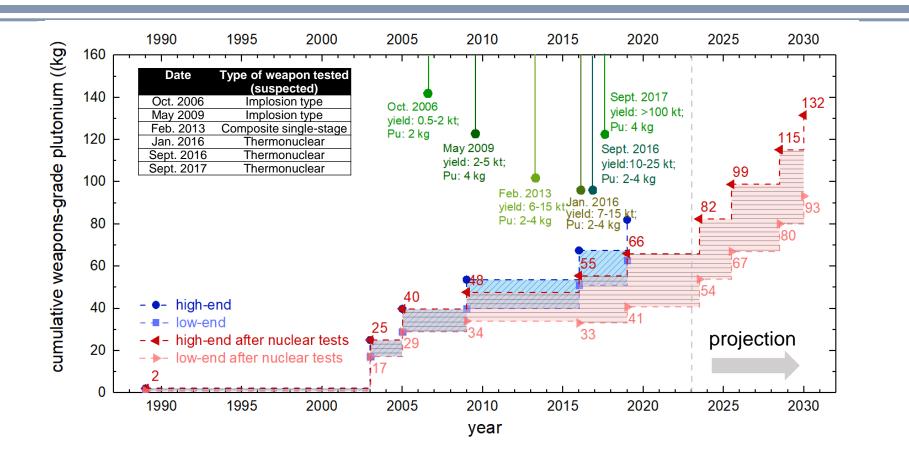


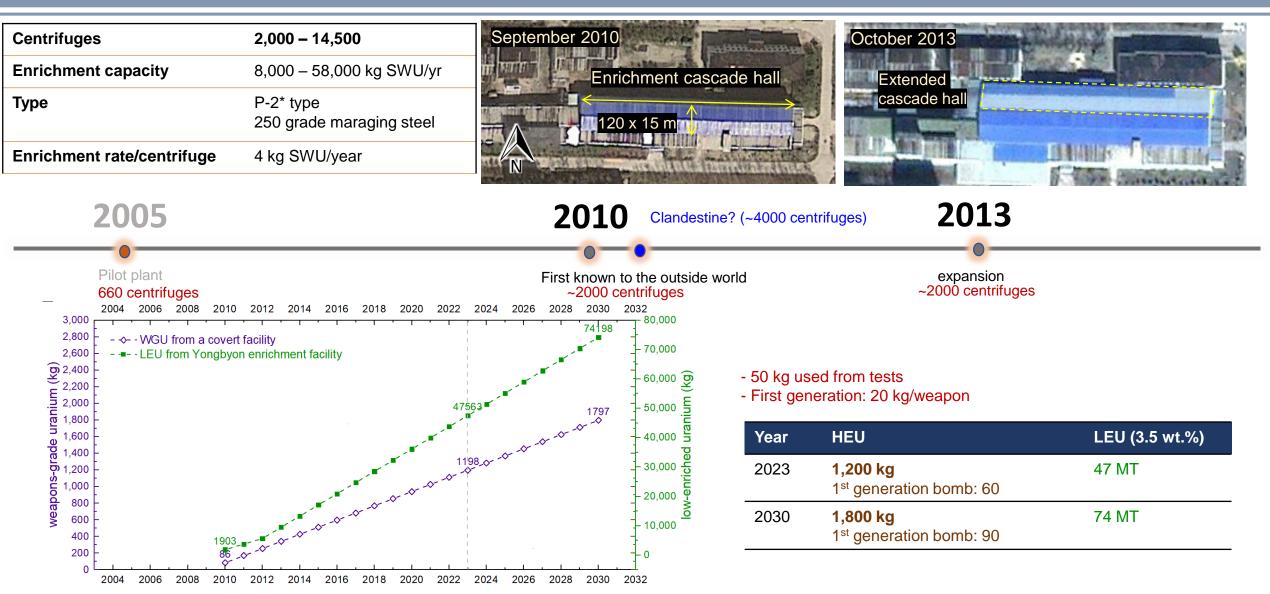
Small nuclear warheads that can be fitted on to short-range missiles


Concerned

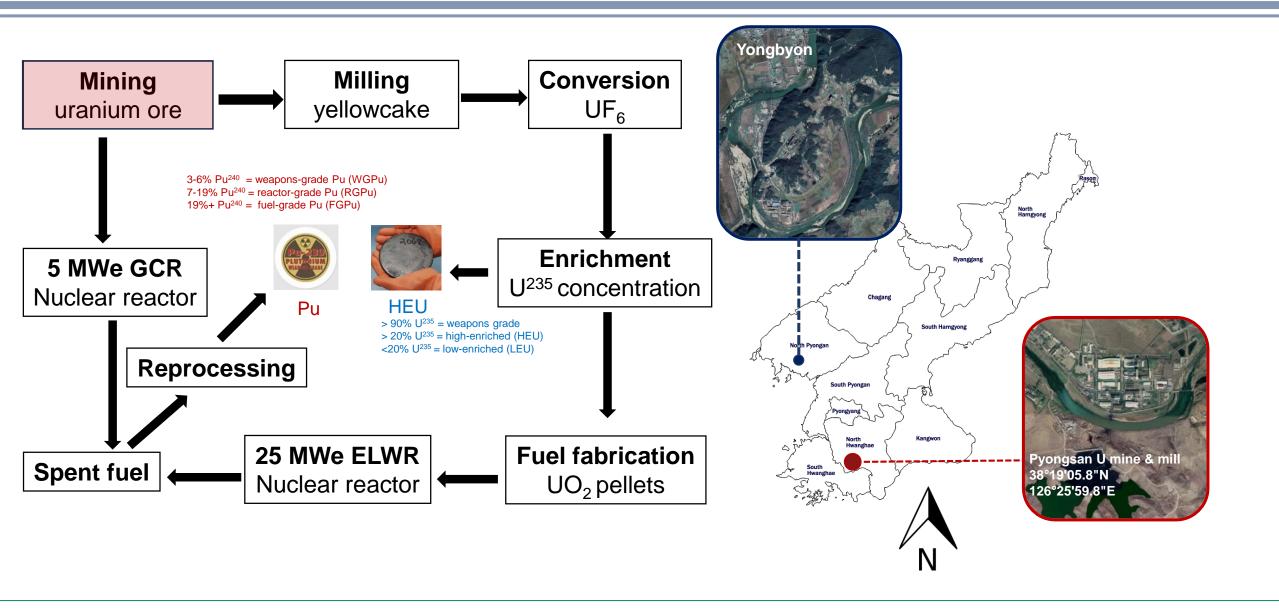
Scientists

North Korea's Fissile Materials Pathway


5 MWe Nuclear Reactor and Pu


effluent

Pu stockpile estimates



	Total produced	Pu used	balance	Fission weapons: 4-6 kg/weapon Pu pits (small – large)
< Oct. 2023	63-82 kg	19 (±3) kg	44-63 (±3) kg	9-12 (±2)
< 2030	102-131 kg	19 (±3) kg	83-112 (±3) kg	17-22 (±2)

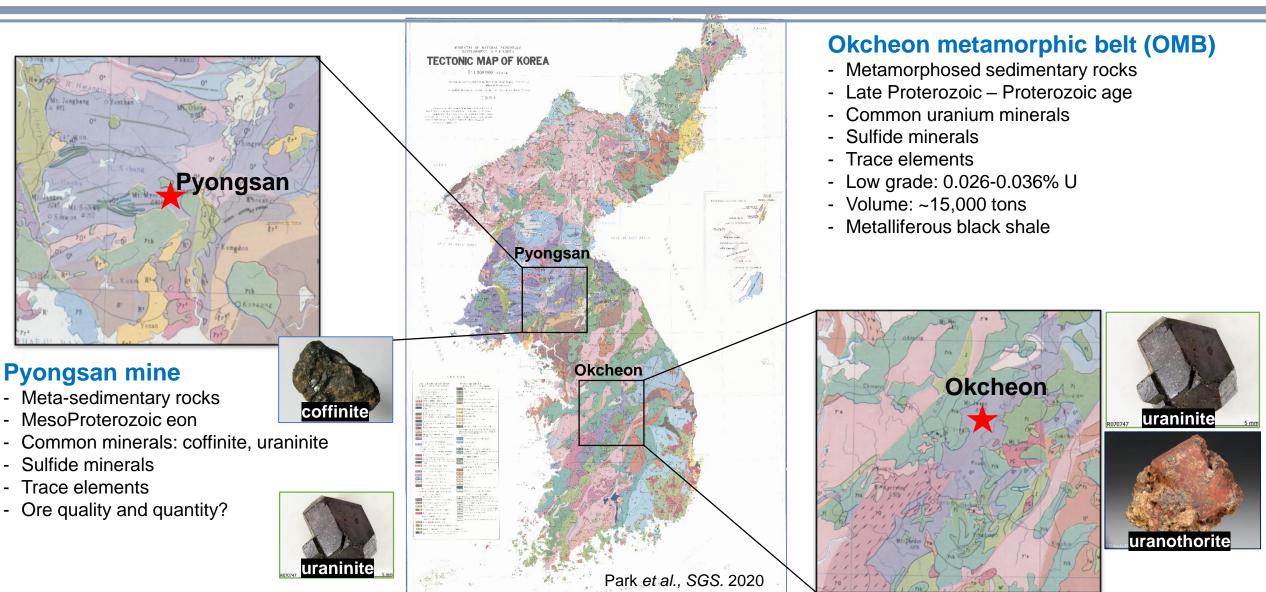
Enrichment Program and HEU

Front-end of North Korea's Nuclear Program

Front-end of North Korea's Nuclear Program

- Geology plays a significant role in the uranium production pathway
 - Exploration and exploitation
 - Design of mines, mining techniques
 - Commissioning, operating, decommissioning

Evidence-based analysis of what could be on the ground


- geological maps of North Korea explanatory texts
 - multiple institutions
 - 1940s 2022
- geochemical literature, peer-reviewed field geology reports (1950s-2021)
- primary documents
- field collection/analysis of analogous rock samples

Geological Analysis of North Korea's U Deposit

Geochemical Analysis and Ore Quality

- Comparable geological settings, host rock age, mineralogical details with OMB
- Deposit type: metamorphosed organic shale
- Average grade: 0.01-0.03 wt.% U (vs. ~1.00 wt.% U)
 - Soviet geologists: 21.8 323.9 ppm (~0.002-0.03% U) for carbon shales
 - Sweden peltura zone: 0.02% U on average
 - Black shale deposits in China: 0.06% U maximum

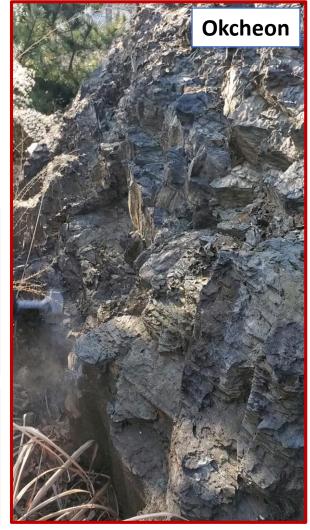
Gapsin & Sozinov 1991: North Korean Shale

원소	I(6)	11(2)	III(4)	IV(6)	V(7)	VI(2)
Li	33±13	228	119±26	41±40	42±13	22
Na	$0,12 \pm 0,07$	0,05	0.06±0,06	$0,02 \pm 0,01$	$0,03\pm0,02$	0,03
K	$1,98 \pm 0,59$	0,16	4.60±1,49	$0,88 \pm 0,63$	$2,39\pm0,71$	1,00
Rb	123 ± 39	4	188±90	33 ± 13	123 ± 36	61
Cs	15±5	1,1	18.4±15.7	$3,4 \pm 2.2$	15±3	6,3
Be	2.5 ± 0.6	1,9	6.2 ± 3.7	1.8 ± 1.1	$6,3 \pm 1,5$	1.9
Ca	$0,73 \pm 1.63$	2,20	0.65±1.16	0.54 ± 0.49	$0,62 \pm 0,51$	0,13
Mg	$1,09 \pm 0.73$	5,66	1.16 ± 0.41	0.70 ± 0.90	0.54 ± 0.16	0,32
Sr	22 ± 29	90	101 ± 167	61 ± 34	63 ± 36	16
Ba	595 ± 133	1130	892±237	335 ± 109	914±255	525
Al	$6,91 \pm 1,22$	6,88	7.57 ± 3.13	$1,58 \pm 1.10$	$4,55\pm1,36$	1.73
Sc	16.2 ± 4.4	14	20 ± 11	4 ± 2	11±4	5,5
La	38 ± 13	121	36 ± 18	19 ± 11	40±10	15
Ce	62 ± 17	188	72±49	36 ± 20	59±11	17
Nd	30 ± 9	83	32 ± 21	19 ± 11	36 ± 10	12,8
Sm	6.9 ± 2.0	11,2	5.8 ± 4.0	2.6 ± 1.2	5,5±1,8	1,32
Eu	$1,42\pm0,37$	2,55	1.40 ± 1.37	0.67 ± 0.30	$1,37\pm0,69$	0,45
Gd	$6.6 {\pm} 3.0$	12,0	$7.2 \pm 10,6$	3.9 ± 1.9	$6,2\pm 2,7$	1.7
Tb	$1,00 \pm 0,38$	1,50	0.81 ± 0.82	0.41 ± 0.21	0,82+0,36	0.20
Yb	$3,37 \pm 1,27$	3,89	2.77+2.18	1.29 ± 0.75	3.08+1.05	1.11
Lu	$0,55 \pm 0,21$	0.16	0.28+0.15	0.09 ± 0.06	0.43+0.13	0.15
U	21.8 ± 6.9	323,9	111 ± 107	87±59	110-53	21.8
Th	$12,9 \pm 3,9$	12,3	12.6 ± 6.2	3.3 ± 2.0	$7,6\pm1.9$	3.2
Si	$19,52 \pm 3,44$	19.10	30.2 ± 5.50	41.51-3.24	18.27+2.02	12,34
Ti	0.36 ± 0.10	0.37	0.38 ± 0.24	0,10-0.06	0.26 ± 0.09	0.13

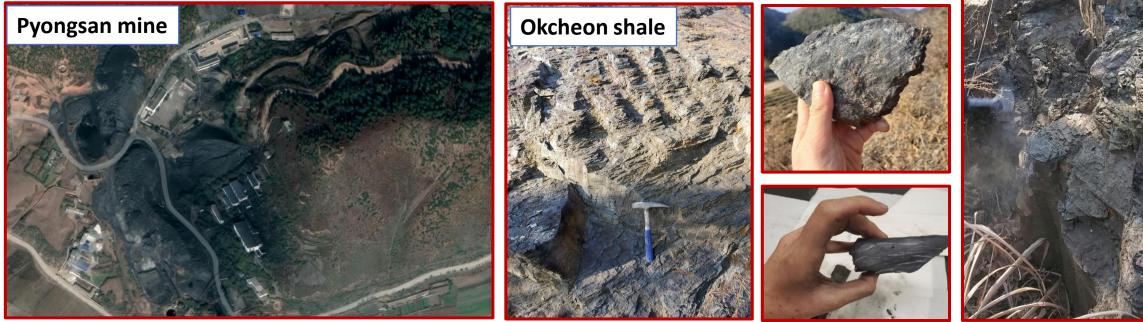
chovabo, Grr, 2002. Sweden r ellura zone						
Table 1. Summary of uranium and TOC variation.						
		Ag	nostus pisi	formis Zone		
Area ¹	TOC	± 2	n	U	± 2	
	(wt.%)	(wt.%)		(ppm)	(ppm)	
Rügen G14	4.7	4.0	3	27	n.d.	
Bornholm	7.18	1.16	5	38	90	
Scania	8.5	0.8	15	31	4	
S. Öland	8.9	1.5	5 3	40	5	
N. Öland	8.6	0.6		28	46	
Gotland	11.2	n.d.	1	35	n.d.	
Billingen	9.1	0.7	10	56	30	
Östergötland	10.4	26.5	2	55	84	
Kinnekulle	10.9	0.3	6	37	9	
	<i>Peltura</i> zones ⁵ (<i>P. sc<mark>arabaeoides</mark> Z</i> one)					
	TOC	± 2	n	U	± 2	
	(wt.%)	(wt.%)		(ppm)	(ppm)	
Rügen G14	not cored			not cored		
Bornholm	11.1(11.7)	1.3(n.d.)	9(1)	113(100)	30(n.d.)	
Scania	11.5(11.6)	0.5(0.6)	87(56)	99(97)	13(14)	
S. Öland	14.5(15.3)	6.3(26.4)	3(2)	180(197)	86(205)	
N. Öland	-			-		
Gotland	-			-		
Billingen	14.4(14.7)	0.6(0.6)	76(69)	315(309)	56(56)	
Östergötland	14.8^{6}	2.5	4	1386	137	
Kinnekulle	17.6(15.2)	2.1(3.2)	20(7)	168(176)	67(63)	
Närke	15.6(14.4)	1.5(4.2)	13(5)	192(211)	48(148)	
Finngrundet	-			-		

Schovsbo, GEE 2002: Sweden Peltura Zone

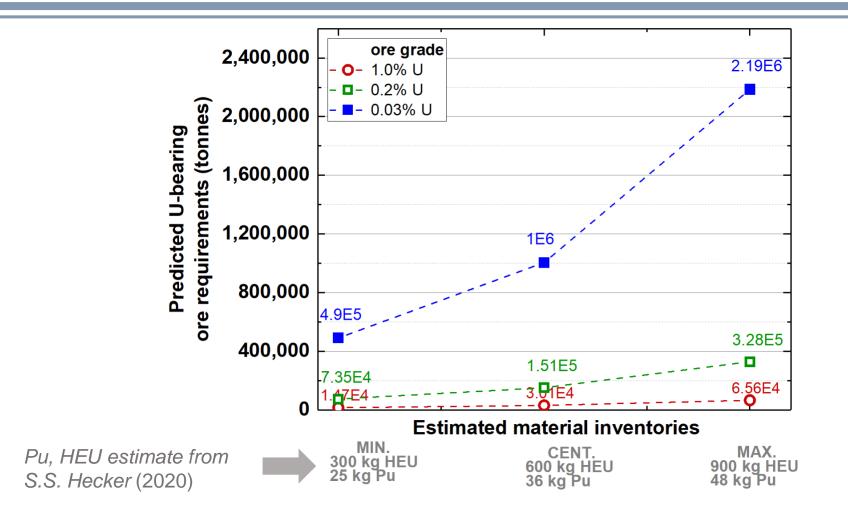
Schovsbo, GFF, 2002: China Niutintang Deposit


Mo isotope, iron speciation, sulfur isotope and geochemical data of the Dingtai profit Dazhuliushui, Maluhe, and


Sample	Depth (m) ^a	Lithology	V ppm	Cr ppm	Co ppm	Ni ppm	Cu ppm	Mo ppm	Pb ppm	U ppm
Dingtai profile									-	
Interval 3										
PM-27	32.3	Black shale	265	108	7.10	42.5	74.6	15.1	17.7	12.3
PM-24	29.3	Black shale	1010	122	8.39	92.9	59.5	24.4	8.75	
PM-23	28.3	Black shale	385	112	7.34	60.7	35.6	27.6	22.7	17.0
PM-22	27.3	Black shale	248	104	11.5	74.5	37.8	26.1	25.2	13.2
PM-21	26.3	Black shale	1430	119	9.98	81.4	30.4	19.0	16.9	17.3
PM-20	25.3	Black shale	314	108	7.40	49.7	36.3	27.7	22.9	13.0
PM-19	23.8	Black shale	899	106	8.01	75.0	51.9	38.4	19.0	17.4
PM-18	22.3	Black shale	926	102	12.4	106	42.3	73.0	17.3	19.3
PM-17	20.8	Black shale	1060	119	36.2	202	74.8	24.8	19.2	17.9
PM-16	19.3	Black shale	2110	141	12.4	135	32.1	56.9	8.40	18.3
PM-15	17.8	Black shale	1410	116	8.36	104	37.3	49.9	11.4	18.8
PM-14	16.3	Black shale	756	105	11.0	88.6	112	26.5	18.9	15.7
PM-13	14.8	Black shale	1510	145	19.0	203	30.3	70.8	10.0	16.6
PM-12	13.3	Black shale	1240	122	3.11	36.5	16.8	13.9	12.5	9.35
PM-11	11.8	Black shale	960	111	3.44	65.8	16.9	86.4	20.2	17.2
Interval 2									2022/2029/12	
PM-10	10.3	Black shale	1070	103	1.09	52.5	18.2	110	13.4	18.0
PM-9	8.8	Black shale	1750	110	4.29	215	24.9	394	13.1	23.3
PM-8	7.3	Black shale	1070	69.9	1.50	40.1	13.4	67.2	15.4	19.1
PM-7	5.8	Black shale	1160	96.3	3.24	120	21.6	374	20.2	26.9
PM-6	4.3	Black shale	4090	159	5.59	133	19.2	188	45.5	28.0
PM-5	2.8	Black shale	4400	1180	2.12	147	30.1	38.0	15.7	21.0
PM-4	1.3	Black shale	4270	2450	2.31	154	29.8	140	11.3	23.0
Interval 1									1.00	
Maluhe deposit										
MLH-4	0.7	Black shale	310	116	32.1	301	69.0	142	47.2	54.9
MLH-5	0.5	Sulfide ore	423	53.0	255	36,300	1970	70,900	156	112
MLH-2	0.5	Sulfide ore	480	64.0	254	37,700	1880	61,600	235	118
MLH-6	0.3	Phophorite	417	26.0	4.56	356	44.1	117	3.09	517
Dazhuliushui									01	
deposit										
DZLS-7	0.7	Black shale	409	93.0	22.5	332	71.4	65.2	15.3	30.6
DZLS-8	0.5	Sulfide ore	644	55.0	220	60,100	2740	62,800	117	114
DZLS-2	0.5	Sulfide ore	658	53.0	273	62,700	2450	73,100	183	125
DZLS-9	0.3	Black shale	320	85.1	18.5	249	52.8	90.6	15.4	24.5
Sancha deposit									-	
SC-11	0.5	Sulfide ore	37.80	149	111	29,900	1180	65,900	37.0	595
SC-2	0.5	Sulfide ore	1680	68.0	172	61,500	2080	56,400	180	408



- Comparable geological settings, host rock age, mineralogical details with Okcheon black shale
- Hypothesized deposit type: metamorphosed organic shale
- Average grade: 0.01-0.03 wt.% U (vs. ~1.00 wt.% U)
 - Sozinov et al.: 21.8 323.9 ppm (~0.002-0.03% U) for carbon shales
 - Black shale deposits in China: 0.06% U maximum
 - Sweden peltura zone: 0.02% U on average



Implications of Low Ore Quality

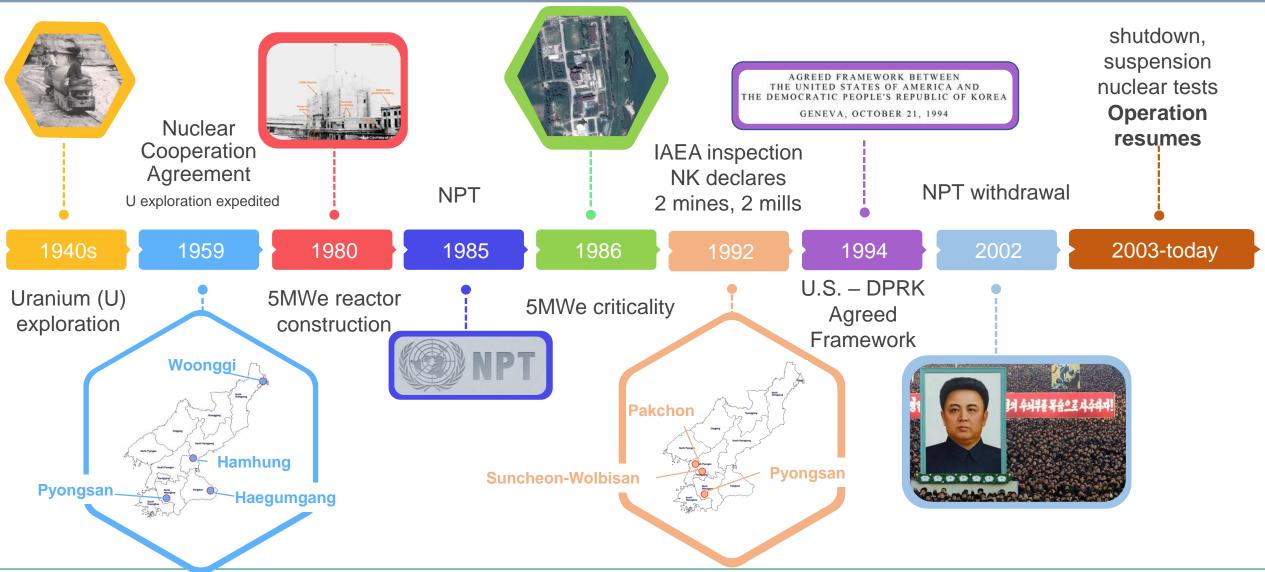
• Estimates of current weapons-grade material inventory depends on accurate ore grade.

Park et al., SGS. 2020

Looking Beyond Pyongsan

Name	Predicted deposit type	Predicted ore grade (%U metal)		
Cholsan	Monazite from pegmatite deposit or granite related	<i>Av</i> . ~0.001%, with an upper bound of ~0.05%.		
Hamhung	Possibly granite-related or metasomatite	Av.~0.001%, with an upper bound of ~0.05%.		
Hyesan	Metamorphosed organic shale or anthracite coal mines	<i>Av</i> .~0.03%, with an upper bound of ~0.2%.		
Kumchon	Metamorphosed organic shale	<i>Av</i> .~0.03%, with an upper bound of ~0.2%.		
Kusong	Monazite from pegmatite deposit or granite related	<i>Av</i> .0.001%, with an upper bound of ~0.05%		
Pyongsan	Metamorphosed organic shale	<i>Av</i> .~0.03%, with an upper bound of ~0.2%.		
Rajin	Granite related	<i>Av</i> .~0.001%, with an upper bound of ~0.05%.		
Sinpo	Metamorphic terrane	<i>Av</i> .~0.005%, with an upper bound of ~0.01%.		
Sunchŏn (Wolbisan)	Limestone	Av.~0.04%, with an upper bound of ~0.2%.		
Wiwon	Limestone	Av.~0.04%, with an upper bound of ~0.2%.		

Further studies are needed to verify other sources for uranium production.


Conclusions

- North Korea's nuclear program remains active, and it continues to expand its nuclear arsenal both quantitatively and qualitatively
- To exponentially increase nuclear arsenals → drastically increase fissile materials output
- Indigenous uranium ore is the first rate-limiting step in the fissile material production pathway
 - Pyongsan uranium ore grade is <u>lower</u> than previously reported
 - challenging for electricity generation, but not an impediment for arsenal purpose
 - quantity of ore?
- There remain <u>large</u> uncertainties in predicting North Korea's fissile material stocks and production capacity
 - → Negotiations process and non-proliferation commitment
 - ➔ Decommissioning of once-operated reactor

How do we restart diplomacy with North Korea?

History of North Korea's Nuclear Program

Activities at Punggye-ri

• Early 2022 \rightarrow refurbishment work and preparations at tunnels \rightarrow potential for future testing?

Activities at Punggye-ri

5 MWe Nuclear Reactor and Pu

Reactor type	Pressurized water reactor
Thermal power	20 MWth
Fuel type	U metal
Fuel load size	50 tons U
Average burnup	~300-800 MWth-d/ton
Spent fuel	8000 fuel rods
Electricity	2.18 MWe
Operation cycle	2-3 years
Spent fuel pond	25 feet deep
Spent fuel rest period	3 months before transported to the RCL
80 fuel	60 grams Pu

$$XPu\left(\frac{kg}{yr}\right) = CPth\left(MW\right)\beta\left(\frac{kg}{MWd}\right)365\left(\frac{d}{yr}\right)$$

Sources of uncertainty: reactor power, operation days, capacity factor, and the fact that they can be modified.

Union of

Concerned